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Notes About This Booklet

What follows began life as the 24-page ADDENDUM
to the book FOCUSING the VIEW CAMERA.

That book describes a scientific method for focusing a
view camera and for determining depth of field with tilted
lenses. The Addendum provides more material, including a
simplified explanation of the method as well as some
refinements. The Addendum explains, for example, how
depth of field with for tilted lens is related to depth of field
for an un-tilted lens.  This World Wide Web edition of the
Addendum has been edited to eliminate the few references
to the original book that existed in the original Addendum.

Because this is an addendum, the figures start at Fig 38,
and the pages at 104.  This Addendum is, however, intended
to stand on its own.  It is not necessary to have a copy of
FOCUSING the VIEW CAMERA. in order to understand the
contents.

All figures are black and white line drawings; colour has
been avoided in order to minimize file size.
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Introduction

Since FOCUSING the VIEW CAMERA was sent to the
printer, I’ve learned a lot.  Thanks to people like Phil Davis, John
Ward and Craig Bailey who contacted me with questions or
seeking clarification, a few new ways to look at the view camera
problem have emerged.  I’m also quite aware that FOCUSING
the VIEW CAMERA is not an easy read.  The purpose of
preparing this addendum is two-fold: to try to make it easier for
photographers to grasp the basics of this way to control the view
camera, and to describe a few refinements to earlier ideas.

I’ll attempt to offer a “Getting Started” section, something
like computer software manuals use to introduce new users of the
software to its basic features.  A tutorial item will examine how
depth of field for view cameras is related to placement of the
plane of sharp focus, and how depth of field for view cameras is
related to that for normal cameras.  Then I’m going to reflect on
what I wrote earlier, commenting on some of the factors I missed
the first time around.  You’ll learn, for example, how the depth of
field method I described as approximate can be corrected so that
it is even more accurate and convenient to use than the depth of
field tables.

The sections in this addendum are as follows:
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1.  Getting Started

In what follows it will be assumed that the reader
possesses some basic familiarity with the view camera.  You
know what is meant by tilting and swinging the camera back and
the lens.  You know that tilting the lens relative to the back—or
the back relative to the lens—causes the plane of sharp focus,
that surface on which the camera is accurately focused, to move
out of parallel with the film plane.  You may be aware that the
Scheimpflug rule states that the film plane, the lens plane and the
plane of sharp focus intersect along a common line.  If you don’t
know this  rule, that’s OK.  It’s not absolutely necessary to
understand it, anyway.  

Figure 38 shows a schematic (symbolic) diagram of a
normal camera: one with the lens attached in such a way that the
lens axis must stay perpendicular to the film.  Figure 39 serves to
indicate what happens when the lens axis (or the lens plane which
is a surface perpendicular to the lens axis) is tilted.  The film
plane, the lens plane and the plane of sharp focus obey the
Scheimpflug rule.  You need not worry about it; the laws of
physics will make sure that it is obeyed.   The general principle is
simple: if we tilt one of the three planes relative to any one of the
others, the third plane will get tilted too.

In a normal camera, the camera is always focused on a
plane that is parallel to the film.  The view camera allows the
photographer to focus on objects arranged on a plane that is not

FIGURE 38:  For a ‘normal’ camera, the film plane, lens plane and
plane of sharp focus are parallel to one another.
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parallel to the film.  This condition is achieved by tilting either
the lens or the film relative to the other.  That is, we can leave the
lens where it is and tilt the back, or we can leave the back where
it is and tilt the lens.  Or, indeed, we can do a bit of both: tilt both
the back and the lens, but not by the same amount in the same
direction.

The trouble comes in trying to figure out what to tilt and
by how much in order to achieve the intended position for the
plane of sharp focus.  A further challenge arises when we want to
focus on the intended plane of sharp focus and maintain correct
perspective in the image.

Maintaining correct perspective is perhaps the easier task.
Standard perspective usually requires that the film plane remain
vertical and more-or-less square to the line of sight of the camera.
Sometimes we actually want false perspective in order to make
the photograph appear as though it was taken from a place other
than the camera’s true location.  A classic example is taking a
picture of a glass-covered water colour painting.  If we place the
camera squarely in front of the painting, we risk seeing the
camera in the final image due to its reflection in the glass.  The
solution is to move the camera to one side and so view the
painting at an angle.  This eliminates the reflection.  But we also
want to make the image look as though the camera had been
facing the painting squarely.  We accomplish the desired
perspective by having the film face the painting squarely—that is,
keep the film and the painting parallel to one another—and let the
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FIGURE 39:  For a view camera, tilting the lens causes the plane of
sharp focus to tilt also.  The Scheimpflug rule requires that the three
planes intersect along one line
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arrangement of the back and lens effectively squint sideways at
the painting.  Figure 40 illustrates the resulting arrangement.

If achieving the desired perspective were the only problem,
we could get by with lens and back shifts (plus rise and fall) only.

Let’s look now at a somewhat more complex situation.
We are photographing a painting, but we want to include in the
image, not only the painting, but some of the room it is in.
Specifically, the large painting is hanging in a church on a wall
some 30 feet from the camera.  We also want to include a plaque
on the church floor indicating where the artist is buried.  We want
a sharp image of the painting, but also a sharp image of the plate
on the floor some 10 feet from the camera.  To ensure both are
sharp, we wish the plane of sharp focus to pass through the
centers of both the painting and the plaque.  Figure 41 illustrates
a side view of the problem.  To keep the painting rectangular, and
the other features of the building in correct perspective, the
camera back must remain vertical and parallel to the painting.
And we employ the necessary rise and/or fall to achieve the
desired composition.  How do we arrange for the plane of sharp
focus to fall precisely where we want it to be?

There’s another rule that arises from the laws of optics.  I
call it the hinge rule.  The hinge rule will tell us the precise
amount of lens tilt needed.  The hinge rule is another rule very
much like the Scheimpflug principle, but let’s skip the details for
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FIGURE 40:  The view camera can ‘squint’ sideways,
maintaining the proportions of the painting.  The final image
will look as though it had been taken straight on.  Taking the
picture as illustrated here avoids seeing a reflection of the
camera in the glass.
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now.  The hinge rule states that the required amount of lens tilt is
related to only two things: the focal length of the lens, and the
distance the lens is from the plane of sharp focus measured in a
very special way.  We must measure how far the lens is from the
plane of sharp focus along a plane through the lens but parallel to
the film.  In the example at hand, the concept is quite simple.
The camera back is vertical.  Therefore we measure this special
distance in a vertical direction.  The special distance is quite
simply the height of the lens above the plane of sharp focus, as
illustrated in Figure 42.  I use the symbol J to denote this
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FIGURE 41:  Here the task is to adjust the plane of sharp focus
so that it passes roughly through the centers of the painting and
the inscription.  What amount of lens tilt will accomplish this?

FIGURE 42:  The amount of lens tilt required is set by the special
distance J and the focal length of the lens.  J in this case is the
height of the lens above the plane of sharp focus.
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distance, and the symbol α to denote the amount of lens tilt
needed, measured in degrees.

The required amount of lens tilt is given mathematically by
this expression:

α = arcsin (f/J ).

The symbol, f, is of course the focal length.  Don’t be
scared off by the math; it’s really quite tame.  The arcsine
function can be found on many $15 ‘scientific’ calculators, but
we can do  better.  One could, for example, use the calculator to
create a table.  The table might have columns for lenses of
various standard focal lengths.  A column at the left of the table
would show a number of distances.  The other columns would
show the tilt angles required for the various focal lengths.   In our
example, J is equal to 8.5 ft. and the lens in use has a 75mm focal
length.  The pre-calculated table would show a required tilt angle
of about 1.75°.

Better yet, for small tilt angles we can even dispense with
the table.  For lens tilts less than 15°, we can get an approximate
value of the lens tilt from either of the following:

if we measure f in inches and J in feet:  

α = 5f/J .

If we measure f in millimeters and J in feet: 

α = f/5J.

It’s still math, but its pretty simple math.

So we set the lens tilt to 1.75° towards the intended plane
of sharp focus.  Not all view cameras have tilt scales.  My own
does not.  I use a high school geometry protractor to set the tilt.  I
can’t set it to better than about half a degree, and that’s usually
good enough.

(The direction of lens tilt will have a bearing on the
orientation of the plane of sharp focus.  The plane of sharp focus
will always be parallel to the lens tilt axis.  If we imagine a plane
parallel to the film but passing through the lens, that plane will
intersect with the plane of sharp focus.  If we mark that
intersection, we will find it is a line, and it will always be parallel
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to the axis about which we moved our lens.  In common view
camera language, if we use vertical tilt only, the tilt axis is
horizontal.  If we use swing only, the tilt axis is vertical.  If we
use both tilt and swing, the matter gets complicated.)

In essence, the hinge rule tells us that if we move the back
of the camera to and fro (without changing its angle), closer to or
farther from the lens, the plane of sharp focus must pivot on a line
a distance J from the lens.  In our example this pivot line is on
the plane of sharp focus directly below the lens.  I call that line
the hinge line.  I call it that because that line is like the pin in a
hinge.  The plane of sharp focus hinges on that line.  As we move
the back away from the lens, the plane of sharp focus will swing
up in front of the camera.  If we move the camera back closer to
the lens, the plane of sharp focus will swing down, away from the
lens.  (It’s the Scheimpflug rule working in consort with the hinge
rule that causes this rotation, by the way.)  So, to achieve the
desired focus in our example, we focus, using the ground glass,
either on the center of the painting, or on the center of the plaque.
If we have done things right, when one is in focus, the other will
be too.  

That’s it; we’re done focusing.

But what about depth of field?  Well, here the view camera
really has the advantage over normal cameras.  Calculating view
camera depth of field is dead simple.  Plainly put, the depth of
field at a distance one hyperfocal distance, H, in front of the
camera is our friend J.  Like the distance J itself, this depth of
field is measured in a direction parallel to the film.  Either side of
the plane of sharp focus, the depth of field is J.  In this sense
depth of field is symmetrical, always—just so long as we
measure it parallel to the film.

Can’t remember what the hyperfocal distance is?  There’s
an easy way to remember it.  The criterion for image sharpness is
often that the circle of confusion at the image should be no
greater in diameter than some fraction of the lens focal length.
The number often cited is  1/1500.  Well, the hyperfocal distance
is then 1500 lens aperture diameters.  If our 75 mm lens is set to
f/22, the hyperfocal distance will be 1500 times 75mm divided by
22.  That is about 5100 millimeters or 16.8 feet.  Again, it might
be useful to  pre-calculate things and create a handy card showing
hyperfocal distances for a variety of focal lengths and apertures.
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It can be demonstrated that the limits of depth of field are
also planes, and that they too pass through the hinge line.  Getting
back to our example, we can now sketch in the limits of depth of
field.  We know the depth of field at one hyperfocal distance, and
we know the limits pass through the hinge line.  See Figure 43 for
the result.  Looks fine: essentially everything included in our
photograph is within the limits of depth of field.

The example just described is pretty straight forward.
Unfortunately, the photographic situation will not always be quite
so easy to analyze.  The film will not always be vertical, and the
plane of sharp focus will not always be near-horizontal.  The
basic principles to remember are as follows:

The lens tilt, measured relative to the film plane,
determines the distance from the lens to a line about which the
plane of sharp focus pivots.  That line, called the hinge line, will
also be parallel to the lens tilt axis.

Shortening the distance between lens and film plane causes
the plane of sharp focus to rotate (about the hinge line) away
from the front of the lens.

Increasing the distance between the film plane and the lens
causes the plane of sharp focus to rotate towards the front of the
lens.

FIGURE 43:  Depth of field for view cameras is easy.  At a
distance of one hyperfocal distance, H, the depth of field
measured in a direction parallel to the film is simply J on either
side of the plane of sharp focus.  (Camera is is not to scale.)
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FIGURE 44:  Here’s a side elevation view of the problem posed to
me by Craig Bailey of Alvin Texas.
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Depth of field, measured parallel to the film varies directly
as the distance, J.  Increasing the lens tilt decreases J and so also
decreases depth of field.  Depth of field measured this way is
always symmetrical about the plane of sharp focus.

Now you have the basics; the rest is just details.

We’ll continue with a tutorial that might help to illustrate
how one might go about deciding where to place the plane of
sharp focus and how depth of field interacts with that placement.
Along the way, we’ll see how depth of field for view cameras is
related to depth of field for normal cameras.

2.  Tutorial

A challenging three-dimensional problem was presented to
me by Craig Bailey of Alvin, Texas.  The camera, positioned
perhaps three feet above the ground, views a pathway passing
through a gate.  The gate is moderately close to the camera: about
seven feet away.  The path itself extends from the extreme
foreground to the distance, but always at ground level.  If the
problem were just to focus on the pathway, the solution would be
easy—for a view camera.  We would simply set the lens tilt to
give a distance, J, equal to the height of the lens above the path,
then focus on the path—any part of it.  The gate, however,
extends from ground level to perhaps five feet above ground
level.  And in the background are bushes and trees between
ground and a significant altitude.  Figure 44 sketches a “side



ADDENDUM 114

FIGURE 45:  Using an aperture of f/22 with a non-tilted 90 mm
lens yields the depth of field situation shown above if the lens is
focused at the hyperfocal distance.  Objects in the distance fall
within acceptable limits, but the path in the foreground does not.
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elevation” view of the situation.  Can we use lens tilt to good
effect under these conditions?

Considerations

To obtain standard perspective for the gate and other
vertically oriented objects, the film plane must be oriented
vertically.  This prevents the gate posts from pointing in towards
one-another or from splaying apart in the image.  The main
three-dimensional object in the foreground is the gate.  Since the
depth of field in the vertical direction (parallel to the film) is
equally distributed about the plane of sharp focus, a first guess is
that the plane of sharp focus should pass through a line half-way
up the gate posts.  But what value of J (or lens tilt) should be
used?  To answer this, we must understand what happens to depth
of field as the plane of sharp focus pivots, not about the hinge
line, but about a line half way up the gate posts.

Perhaps we should not bother with lens tilt at all; we might
consider just setting focus at the hyperfocal distance.  Figure 45
shows the plane of sharp focus and near limit of depth of field for
the case of no lens tilt.  Here the camera is simply focused at the
hyperfocal distance (12.1 ft.) for its 90 mm lens at f/22.  The far
limit of depth of field is at infinity.  Alternatively one might focus
on the gate posts, giving rise to the limits of depth of field shown
in Figure 46.  I’ve used the symbols Zo, Zn, and Zf to denote the
distance at which the lens is focused, the near limit of depth of
field and the far limit of depth of field respectively.
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FIGURE 47:  Tilting the lens forward by 3.3° or 5.6° yields the
depth of field limits indicated by the solid and dashed lines
respectively.  The aperture is f/22.  Note that increasing the lens tilt
decreases depth of field.
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FIGURE 46:  Using an aperture of f/22 but focusing on the gate
posts yields too little depth of field at near and far distances.

If we focus at the hyperfocal distance, the gate is within
the established limits, but not the path in the foreground.  If we
focus on the gate posts, the path is sharpened but the nearest bits
of it will still not be quite be as sharp as desired.  And anything
beyond the tree shown will be noticeably out of focus.

Let’s reconsider tilting the lens.  Using the principles
illustrated in Figure 43, we can sketch the limits of depth of field
for a number of candidate tilted-lens situations.  Two such
possibilities are shown in Figure 47.
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Figure 47 clearly illustrates that if the distance J is reduced
from 5 feet to 3 feet (by increasing lens tilt), the region of
acceptable definition—the space between the near and far limits
of depth of field—shrinks noticeably.  To maximize depth of
field, one must minimize lens tilt.  Yet tilting the lens can still be
valuable for sharpening particular regions, such as the
foreground.

As the sharp-eyed may have observed, Figures 46 and 47
are related.  The place where the two near limits of depth of field
cross in Figure 47 corresponds to the near limit of depth of field
in Figure 46.  And the same is true for the far limits.
Furthermore, these two points of intersection, and the spot where
the plane of sharp focus pivots, all lie along a straight line
through the lens.  This is not an accident.  When the plane of
sharp focus is rotated about a fixed point in the object field—by
both tilting the lens and adjusting the lens-to-film distance—the
near and far limits of depth of field, along a ray through that fixed
point, cannot change significantly.  The principle at work here is
that depth of field is related only to the focal length, the aperture,
the allowable circle of confusion diameter, and the distance at
which the lens is focused.  The depth of field, along a ray from
the lens to a fixed point constrained to be in focus, cannot change
just because the lens is tilted.

In the problem at hand, we choose to hold focus on a point
half-way up the gate post.  This ensures that both ends of the post
will be acceptably and equally sharp.

The procedure for plotting depth of field is simple.  First
we select the point in the object space where we want the plane of
sharp focus to pivot.  After any camera adjustments we will
always focus again on this spot.  Lets call this spot “point P”.
Then we draw (or imagine in our minds) the near and far limits of
depth of field using classical techniques for untilted lenses.  For
this purpose the camera is presumed to be focused at a distance
equal to the lens-to-pivot point distance (measured in a direction
perpendicular to the film plane).  Then we draw, or imagine, a ray
from the lens to point P and beyond.  Where this ray intersects
the near and far limits of depth of field indicates the pivot points
for these planes.  We’ll call these pivot points “point C” for the
near or close limit of depth of field, and “point F” for the far limit
of depth of field.

But we also know that, for a tilted lens, the near and far
limits of depth of field must pass through the hinge line.  These



Merklinger: FOCUSING THE VIEW CAMERA117

facts tell us everything we need to know.  In our drawing, the
near limit of depth of field extends from the hinge line to point C
and beyond.  Similarly, the far limit of depth of field extends
from the hinge line through point F.  As we adjust lens tilt,
always readjusting the lens-to-film distance to keep the plane of
sharp focus passing through point P, the hinge line moves along
the Parallel-to-Film Lens Plane.  Figure 48 illustrates the depth of
field limits for a J distance of 7.5 feet and for f/22.  With this
set-up the foreground and gate post should be in focus, but the
base of the tree will not be.  But, as a first try, we’re not far off.

(Before proceeding further, one might note that as lens tilt
is adjusted towards zero, the distance J goes to infinity, and the
limits of depth of field become parallel to the film plane.  Thus
the approximate method described here for view cameras is quite
in accord with the traditional theory for non-tilted lenses.)

The problem now is to refine the positions of the hinge line
and the points C, P and F to best achieve our goal.

A Solution

Applying this knowledge to the problem of the gate posts,
we can make the following statements.  Point P should be

FIGURE 48:  Using J equal to 7.5 feet (2.3° lens tilt) and f/22
solves the foreground problem, but falls short of giving the desired
result for objects in the distance.  The base of the tree is outside the
permissible limits.  The points C and F are at the limits of depth of
field for a non-tilted lens focused on point P.
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half-way up the gate posts, as noted earlier.  Now we have just
two things left to determine.  We must choose an f-number and
we must choose the lens tilt.  The lens tilt is determined by the
lens-to-hinge line distance, J.  Point C must be such that the near
limit of depth of field clears the tops of the gate posts.  The hinge
line will probably need to be somewhere near ground level.  It
can be below ground level provided the near limit of depth of
field rises above the ground where the ground first comes into the
camera’s view.

The next step is to draw the near and far limits of depth of
field for a lens focused at a distance of 7 feet, but for several
apertures.  We can do this using standard depth of field tables, or
formulae.  If we use Z to denote distance in front of the lens,
measured in a direction perpendicular to the film plane, the
appropriate  formulae are, for the near limit: 

Zn = ZoH/(Zo + H)

and for the far limit:  

Zf = ZoH/(H - Zo).

H denotes the hyperfocal distance for whatever criteria we
choose, while Zo indicates the distance to the selected “point P”.
In this example Zo is 7 feet.  For a 90 mm lens on a 4 by 5
camera, we’ll assume the hyperfocal distance is equal to 900 lens
aperture diameters.  This corresponds to a circle of confusion
diameter equal to 0.1 millimeters or 1/1500 of the format
diagonal.  Figure 49 shows the positions of the limits so
calculated, marked along the line from lens to point P, for various
apertures.  Table 1 provides the numbers appropriate to the
problem at hand.

A line from the top of the gate post, through the nearest bit
of ground that can be seen by the camera, indicates that the
distance J should be no greater than 8.4 feet.  If J is greater than
8.4 feet, the near ground and the top of the post cannot both be in
acceptable focus.  The construction also indicates that an f-stop a
bit smaller than f/11 could be used to solve the foreground
problem.  But, as shown in the figure, f/11 leaves things in the
distance much outside the far limit of depth of field.  In order for
objects in the extreme distance at ground level to be sharp, the
hinge line must be at the same level as, or above, the appropriate
point F for the aperture chosen.  This ensures the far limit of
depth of field will slope downwards away from the camera.
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TABLE 1:  This Table shows Hyperfocal Distances in feet
for various f-stops as well as the near and far limits of
depth of field for a non-tilted 90 mm lens focused at 7 feet.

  

f-Stop H Zn Zf
2.8 94.9 6.5 7.6
4 66.4 6.3 7.8

5.6 47.5 6.1 8.2
8 33.2 5.8 8.9

11 24.2 5.4 9.9
12 22.1 5.3 10.2
16 16.6 4.9 12.1
22 12.1 4.4 16.6
27 9.8 4.1 24.2
32 8.3 3.8 44.6
38 7.0 3.5 -7382.8
45 5.9 3.2 -37.8
64 4.2 2.6 -10.2
90 3.0 2.1 -5.1

Re-examination of Figure 48 will illustrate that even f/22 is not
sufficiently small to guarantee such an outcome.  Decreasing J
helps sharpen objects in the extreme distance, but worsens
matters at, for example, the base of the tree.  With the camera
position chosen, it might appear that a very small aperture will be
needed.  A higher camera position might be called upon to
alleviate the problem substantially.  The higher lens position
would both raise point C and depress point F.  But it also may not

FIGURE 49:  We can estimate the depth of field situation for a
number of f-stops simultaneously by plotting the limits of standard
depth of field for several apertures.  An aperture just a bit smaller
than f/11 is sufficient to solve the foreground problem so long as J
is at 8.4 feet.  But f/11 is far short of what is needed to sharpen
objects at ground level in the distance.  (Distance scale at bottom
is in feet.)
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give us the image composition desired.  Let’s not sacrifice
composition.

At first thought, it may appear that the far limit of depth of
field can never be depressed below the angle of the line from lens
to point P.  It might seem that for point F at infinity or beyond,
the far limit of depth of field is parallel to this line.  For point F
precisely at infinity, this is true.  But in those cases where the
hyperfocal distance, H, is less than the distance, Zo, the formula
indicates a negative value for Zf!  For H less than Zo we have to
plot point F behind the camera!  Figure 50 shows this situation,
using f/90 as an example.  We now see that a reasonable aperture
might permit us to achieve our goal.

All in all, it looks reasonable to use about f/27, yielding the
situation depicted in Figure 51.  The distance J is 5.5 feet,
corresponding to a lens tilt of  about 3°.  We may still have a
problem with objects at ground level beyond the tree.  If such
elements of the image are important we will have to use f/32.
The set-up shown in Figure 51 puts the plane of sharp focus
through the extreme foreground, the centers of the gate posts, and
through the top of the tree.  This factor should help make the
image appear very sharp “from top to bottom”.

We might also have kept our lens set to f/38 with the tilted
lens.  In this case all the important elements of our image would
have been well within the limits for depth of field.  Figure 52

FIGURE 50:  When point P is beyond the hyperfocal distance
for the aperture under consideration, the point F lies behind the
camera!  The situation is illustrated here for f/90 and a lens tilt
of 12°.  Even f/90 fails to supply enough depth of field if too
much lens tilt is used.
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FIGURE 52:  Another solution might have been to use f/38.  With
this aperture every element of our image is well within the depth of
field limits.  Without lens tilt, the near limit of depth of field would
have coincided with the foreground.  Yes, using lens tilt gives us a
sharper picture!
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shows this example.  The penalty for using f/38 would be poorer
definition in the sharpest parts of the image, due to diffraction.

Additional Comments

It is difficult to provide instant answers on how to best
set-up for a view camera if the important elements of the subject
being photographed are not naturally arranged along a plane.
There are, however, relatively simple geometric principles that
can be used to sketch the depth of field situation and help the
photographer decide what might be best for the situation at hand.
One example has been examined here to illustrate these ideas.

FIGURE 51:  A reasonable compromise set-up might be f/27 with
J equal to 5.5 feet (lens tilt of 3°).  Objects at ground level beyond
the tree may be just a bit fuzzy, however.  Using f/32 would
probably sharpen the image of distant objects if that were
necessary.
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In the example studied here, we could have used the
standard “focus at the hyperfocal distance” rule to maximize
depth of field.  The result would have been that we would have
had to use about f/38 and only the gate posts would have been in
critical focus.  By tilting the lens 3° we have put the extreme
foreground, the gate posts and the top of the tree in critical focus,
and, we could open the lens by one stop.  The penalty is that
objects at ground level beyond the tree will tend to be just a bit
soft.  Then again, maybe this will tend to emphasize depth in the
final image.

In real shooting situations there is seldom a need for
precise calculations.  Estimates of distance are usually good
enough to provide the insight necessary, and guide the procedure
to be followed.  I carry with me a table of lens tilts and J
distances for various lenses, and a similar table of hyperfocal
distances.  These guide my determination of the desired lens tilt,
which is then set with the aid of a protractor.  The final
adjustment is done simply by using the ground glass to set focus
on the selected “point P”.  I doubt that I can set the lens tilt more
accurately than perhaps on-half of a degree.  Thus I really don’t
know the value of J to better than perhaps six inches at best.
What I do know, is that I could not set the camera as accurately if
I were to set the lens tilt by trial and error!

3.  Other Ways of Illustrating Depth of Field

The simple relationships just described will allow us to
draw a depth of field diagram for multiple f-stops, but one
orientation of the plane of sharp focus and one J distance.  An
example is shown in Figure 53.  It will be seen that depth of field
measured parallel to the film plane scales directly as the
f-number.  The depth of field measured this way for f/32 is twice
that for f/16 and so on.  (The significance of lines drawn parallel
to the film plane is that image magnification is constant for any
object along such a line.)

We do not always need the same degree of definition at
every point within the “sharp” part of our image.  Can we
determine quantitatively what the circle of confusion will be for
any object in the scene being photographed?  The simple
relationships between depth of field and hyperfocal distance, and
between hyperfocal distance and circle of confusion diameter,
make the problem easy.  Depth of field is one-third as great if we
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FIGURE 54:  The very same drawing used for Fig. 53 can be
re-labeled to map out the circle of confusion diameters (measured
at the image) for any point in the scene.  The numbers represent
the diameter of the circle of confusion, in millimeters, for an
aperture of f/27.  The vertical scale in the center has been adjusted
to measure the diameter of the circle of confusion at the film.  The
gray area shows the region for which the lens will be diffraction
limited.

FIGURE 53:  We can show the depth of field for a number of
apertures simultaneously, as shown here.  Details of the scene have
been removed to reduce the clutter.  The horizontal and vertical
scales (along the edges) are in feet.  Optical conditions and
distances in this diagram are the same as those used in Figure 51.
The center scale shows that the vertical depth of field scales
directly as the f-number of the lens.
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FIGURE 55:  The exact calculations for depth of field
require that the depth of field at one hyperfocal distance
be fJ/A, rather than just J.  The matter is of little
consequence except in close-up photography.
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use one-third the original circle of confusion diameter.  It is four
times as great for four times the circle of confusion diameter and
so on.  This simple scaling allows us to draw a “contour map” of
the circle of confusion diameter for any point in the object field.
In fact such a “contour map” of circle of confusion diameters for
a single f-stop is just a re-labeled version of Figure 53.  An
example is illustrated in Figure 54.

We can go one step farther here by also indicating the zone
for which the lens definition will be limited by diffraction: the
gray area in Figure 54.  The smallest circle of confusion a lens
can produce is limited by diffraction to about N/1600 mm where
N is the f-number.  That limiting diameter is about 0.017 mm at
f/27 or 0.025 mm at f/38.  These figures are about one-sixth to
one-quarter the limit we set for depth of field purposes.

4.  Making the Approximate Method Exact

The method of determining depth of field described so far
is approximate.  The method gives increasingly incorrect answers
as the backfocus distance (lens-to-film plane distance), A,
becomes significantly larger than the lens focal length, f.  The
matter is easily put right with one relatively simple correction.
When we do the calculations without making mathematical
approximations, we find that the depth of field on either side of
the plane of sharp focus is not J but rather fJ/A.  And that’s all
there is to it!  Figure 55 below illustrates.
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FIGURE 56:  Here’s the general scheme of things needed
to determine the exact image-based depth of field from a
knowledge of the object space depth of field.  “PTPSF”
stands for the plane which is Parallel To the Plane of
Sharp Focus.  The spot size diameter, Sh, is determined
in relation to its distance from the plane of sharp focus,
h.  The corresponding diameter of the circle of confusion
is determined by the image magnification.  “PTF” stands
for the Parallel-To-Film lens plane.

5.  Proving the Exact Depth of Field Result

A decision I had made when I originally wrote
FOCUSING the VIEW CAMERA was that I would not include
any of the mathematical proofs: I would simply state the result.
But proving the exact result is so easy, that I’m going to include it
in this addendum.  The proof builds on the work in The INs and
OUTs of FOCUS, however.  If you are not familiar with my
object-based depth of field concept (or do not accept the validity
of it), you may find this difficult to follow.  If that is the case, just
skip this section.

With reference to Figure 56, the derivation is as follows.
The diameter of the disk-of-confusion, or spot size, is zero on the
plane of sharp focus (PSF).  Along any straight line intersecting
the PSF, the spot size, S, varies linearly.  Along any line parallel
to the film plane and in the object field, S will simply be:

Sh = d(h/J)

where d is the aperture diameter and h is the distance from the
PSF measured along that line parallel to the film.  On the film,
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the image of that spot will be simply the magnification times Sh.
That is:

ch = (A/Z) d (h/J).

In order for ch to be less than a, the maximum permitted
diameter of the circle of confusion, we require:

Adh/ZJ < a

or

h < aZJ/Ad.

Since d = f/N, and H = f2/Na, we have:

h < fZJ/AH.

For the limit of depth of field, we then replace the “less-than”
sign by “equals”.  That’s all there is to it.  Of course one has to
believe what’s in The INs and OUTs of FOCUS first.  There’s no
trigonometry required either in this derivation, or in the result!
There’s still just a bit of trigonometry needed to calculate the
distance J from the lens tilt, α.

One of John Ward’s questions was: “Is H equal to f2/Na,
or is H equal to f + f2/Na?”  The answer is “yes”.  I have found
four slightly different definitions for hyperfocal distance.  Two of
them give the answer with the extra f in it.  One gives only the
f-squared term.  The fourth is more complex.  The definition I
used in The INs and OUTs of FOCUS, yields the simplest
expression (H = f2/Na) when I do it ‘right’.  The four definitions
are: The inner limit of depth of field, measured from the lens,
when the lens is focused at infinity (as in my book);  same again
measured from the film; The distance (measured from the lens)
which, when focused upon, gives infinity as the far limit of depth
of field; and, this last again, but measured from the film.  The
differences are subtle and inconsequential for most purposes.

The exact result requires that we use the marked f-number
for the aperture rather than the ‘true’ f-number, no matter how
large A is.  That’s just less calculation to do!  (The depth of field
tables in FOCUSING the VIEW CAMERA assumed one would
always use the ‘true’ f-number.  At 1:1 image magnification, for
example, the true f-number is twice that marked on the lens.)
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6.  Another Look at the Reciprocal Hinge Rule

In Chapter 2 of FOCUSING the VIEW CAMERA I
indicated I could see no immediate application for the reciprocal
hinge rule.  That was rash of me.  While reading a 1904
photography text by the British author Chapman Jones, I realized
that it is essentially the reciprocal hinge rule that has allowed view
camera users to use back tilt as a substitute for lens tilt.
According to Chapman Jones, one should never attempt to adjust
the camera using lens tilt.  He claims that will just result in
trouble.  If one must set the lens axis out of perpendicular with the
film, only back tilt should be considered—even though this may
lead to unnatural perspective.

If one keeps the lens-to-film distance constant as one tilts a
lens, the plane of sharp focus moves in a complicated way that is
not easy to understand.  The plane of sharp focus changes both its
range from the camera and its angular orientation as the lens tilt is
adjusted.  Furthermore, the apparent movement of the plane of
sharp focus depends upon the lens-to-film distance that is set.
Thus the effect of tilting the lens is difficult to anticipate.  It is
very difficult to learn how to judge the right amount of lens tilt by
adjusting the lens tilt directly.  I refer in Chapter 8 to it being like
driving a car on ice.

Adjusting the back tilt is a much ‘friendlier’—more
predictable—operation.  According to the reciprocal hinge rule,
rotating the back about some fixed axis (on the film plane) merely
regulates the distance of the plane of sharp focus from the camera
without changing its angular orientation.  The angular orientation
is fixed by the relative positions of the lens and the axis about
which the back is being tilted.  The plane of sharp focus must
remain parallel to the plane defined by the lens and the back tilt
axis.

The reciprocal hinge rule makes it easier to understand
some of the arguments over whether base tilts or axis tilts are
preferable for the camera back.  The ideal, I guess, is to be able to
position the back tilt axis so as to determine the desired
orientation of the plane of sharp focus.

The difficulty I see with using back tilts is how to maintain
correct perspective.  One solution I learned from a friend—who
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had learned it at a photography workshop—is to determine the
required amount of tilt by tilting the back, but then transfer that
amount of tilt to the lens and straighten the back.  Actually this
method is only an approximation; it breaks down under various
circumstances, especially in the close-up range. It is possible to
use a correction table to translate back tilt into the correct
corresponding lens tilt. Alternatively, one can repeat the process
once or twice to refine the setting.  Each successive time, the new
back angle suggests the correction needed to the tilt at the front. 

Closing

I hope this addendum has accomplished a few things.  I
hope the Getting Started and Tutorial sections have helped make
the methods described in FOCUSING the VIEW CAMERA
somewhat easier to understand.  It should also serve to give
confidence in using what I had thought was an approximate
method for estimating depth of field.  We now have an exact
method that is manageable in everyday use.  And finally, I hope it
has provided a bit of extra insight into the optical principles
governing view cameras.

I’d like to thank all those who have helped me to
understand these things.  Without their questions and
encouragement, I would not have had such fun!  

© Harold M. Merklinger, Ottawa, Canada, September 1993 and
Dartmouth, Nova Scotia, Canada, October 1998.
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